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Overview

What is a Statistical Language Model?

At the broadest level, it is a probability distribution.

Input

Natural Language. Usually entire or prefix of:

Words in a sentence (eg. for speech recognition,

machine translation)

Characters (eg. for OCR, Dasher)

Paragraph/Document (eg. for information retrieval)

Output

Probability [0, 1] – all possible outcomes sum to 1

An unnormalized score, for ranking
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Incremental Language Models

Incremental statistical language models provide the

probability that a given word will occur next, based on the

preceding words:

P(wi |w1, . . . ,wi−1︸ ︷︷ ︸
h

)

For Example:

It’s raining cats and

They went on a shopping

I cooked the fish in a
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A Few Uses for LMs

Statistical language models ensure fluency in speech

recognition (like Siri), machine translation (like Google

Translate), on-screen keyboards (smartphones), etc.

Sometimes they don’t work so well...
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Actually, There’s a Lot of Uses!

Google suggest

Machine translation

Assisting people with motor disabilities. For example, Dasher

Speech Recognition (ASR)

Optical character recognition (OCR) and handwriting
recognition

Information retrieval / search engines

Data compression

Language identification, as well as genre, dialect, and idiolect
identification (authorship identification)

Software keyboards

Surface realization in natural language generation

Password cracking

Cipher cracking
5 / 25

http://jon.dehdari.org
https://en.wikipedia.org/wiki/Dasher_(software)


A Short Overview

of

Statistical

Language Models

Jon Dehdari

Introduction

n-gram LMs

Skip LMs

Class LMs

Topic LMs

Neural Net LMs

Conclusion

References

Differences in LM Uses

Grammatical Lexical

Local

Long-

Distance
Parsing

Summarization IR

NLG

MT Google Suggest
Password Cracking

ASR

Software Keyboards
OCR, Dasher

LangID, Cipher Cracking
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LM Usage

Typical LM Queries in ...

ASR : p(recognize speech) vs. p(wreck a nice beach) vs.

p(wreck an ice peach), ...

Cipher cracking : p(attack at dawn) vs. p(uebvmkdvkdbsqk)

Google Suggest : p(how to cook french fries) vs. p(how to cook

french dictionary)

IR : query(cats and the cradle): doc1(i like cats) vs.

doc2(i like dogs)

MT & NLG : lex: p(use the force) vs. p(use the power);

ordering: p(ready are you) vs. p(are you ready)

OCR : p(today is your day) vs. p(+qdav ls y0ur d4ij)

A good cipher should obey the principle of diffusion (Shannon, 1949).
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Language Modeling is Interesting!

NLP Task Avg. Entropy

Language Modeling (=Word Prediction) 7.12

English-Chinese Translation 5.17

English-French Translation 3.92

QA (Open Domain) 3.87

Syntactic Parsing 1.18

QA (Multi-class Classification) 1.08

Text Classification (20 News) 0.70

Sentiment Analysis 0.58

Part-of-Speech Tagging 0.42

Named Entity Recognition 0.31

From Li & Hovy (2015)
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n-gram Language Models

The simplest statistical language models,

n-gram LMs, base their prediction on the

previous word or two (Markov assumption)

P(wi |w1 . . .wi−1) ≈ P(wi |wi−n+1 . . .wi−1)

History Sux!

For Example:

It’s raining cats and

It’s raining cats and

They went on a shopping

They went on a shopping

I cooked the fish in the

I cooked the fish in the
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n-gram LMs

In spite of their many, many shortcomings, n-gram LMs

are still widely used

1 They train quickly

2 They require no manual annotation

3 They are incremental

10 / 25

http://jon.dehdari.org


A Short Overview

of

Statistical

Language Models

Jon Dehdari

Introduction

n-gram LMs

Skip LMs

Class LMs

Topic LMs

Neural Net LMs

Conclusion

References

Uniform Distribution (Zero-gram)

Zero-gram Model

In a zero-gram model, all words from the vocabulary

(V ) are equally likely:

p(wi ) =
1

|V |
= |V |−1

For example, if we were to open a dictionary and

randomly point to a word, then “orangutan” would

have the same probability as “the”:

p( ) = p(λP ∈ D〈e,t〉.ıx [P(x) ∧ C (x)])
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Unigram Model

In a unigram model, using maximum likelihood

estimation, probabilities are based on word counts:

p(wi ) =
count(wi )

count(w)

For example, if we were to open a novel and randomly

point to a word, then “orangutan” would have much

less probability than “the”:

p( ) � p(λP ∈ D〈e,t〉.ıx [P(x) ∧ C (x)])
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Bigram Model

But what about:

“I gave a banana to a furry orange ”

Here, a unigram model would give too much probability to

“the” and not enough to “orangutan”

In a bigram model, using maximum likelihood estimation,

probabilities are based on bigram and word counts:

p(wi |wi−1) =
count(wi−1,wi )

count(wi−1)

w0 w1 w2 w3 w4 wk

Actually the denominator should be count(wi−1, •) , but in an incremental setting with the end of sentence symbol </s>, this is the same.
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n-gram LMs

Trigram and other n-gram LMs use a longer contiguous history

p(wi |wi−2,wi−1) =
count(wi−2,wi−1,wi )

count(wi−2,wi−1)

w0 w1 w2 w3 w4 wk

w0 w1 w2 w3 w4 wk

w0 w1 w2 w3 w4 wk
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Using n-gram LMs

Using Multiple n-gram Models

Backoff – Use the highest-order n-gram model that has

enough occurrences in the training set

Interpolation – Use all n-gram models, weighting them

differently

Smoothing n-grams

Smoothing allows us to deal with unseen histories

Usually steals some probability mass from seen events

and gives some to unseen events
See: http://statmt.org/book/slides/07-language-models.pdf
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Skip LMs

Skip LMs like n-gram LMs, but allow intervening words between

the predicted word and its conditioning history. These are

combined (interpolated) with n-gram models.

Example skip bigram:

p(wi |wi−2) =
count(wi−2,wi )

count(wi−2)

w0 w1 w2 w3 w4 wk

+ They capture basic word order variation, and are still (more)

useful with large corpora (Goodman, 2001, § 4)

± There’s many possible combinations of histories to use

− They unnecessarily fragment the training data instead of

generalizing it (Rosenfeld, 1994, pg. 16).
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Class LMs

Class-based LMs abstract beyond specific words, so that, eg.

‘Thursday ’ and ‘Friday ’ are grouped together to function similarly

+ They’re useful for small- and medium-sized corpora (up to a billion

tokens), and easy to use. Words can be automatically clustered.

± They have advantages and disadvantages for morphologically-rich

& freer word order languages

− They’re poor at handling fixed phrases and multi-word expressions:

<s> PRP

it

VBZ

’s

VBG

raining

NNS

cats

CC

and
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Topic LMs

Both class-based and topic-based LMs use a bottleneck variable to

generalize the history

Class-based LMs generalize the short-term grammatical history

Topic-based LMs generalize the long-term lexical history

Documents are (soft) clustered into a set of topics automatically

t1

w1

t2

w2

t3

w3

t4

w4

tk

wk

+ Useful for domain adaptation. Widely used in information retrieval

− They’re slow and don’t scale up well. They don’t capture local

grammatical info, so they’re combined with other LMs

18 / 25
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t1

w1

t2

w2

t3

w3

t4

w4

tk

wk

+ Useful for domain adaptation. Widely used in information retrieval

− They’re slow and don’t scale up well. They don’t capture local

grammatical info, so they’re combined with other LMs
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Neural Net LMs

Like topic-based LMs, neural net LMs reduce

high-dimensional discrete probability distributions to

low-dimensional continuous distributions

Original idea inspired by biological neurons, but

architecture has diverged from biology

Has (multiple) hidden layers, to allow multiple levels of

generalization
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h1 h2
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Recurrent Neural Net LMs

Elman Networks

Like previous feedforward layout, but also has the

previous hidden state feed into current hidden state

In principle can capture longer dependencies
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RNNLM’s Continued

When training Elman networks the cycle gets unwrapped (called BPTT)

Output

State/Hidden

Input State/Hidden (t − 1)

Input (t − 1) State/Hidden (t − 2)

Input (t − 2) State/Hidden (t − 3)

Output

State/Hidden

Input Previous State

W

V

U

V

U

V

U

W

V

U

Copy (delayed)

Image derived from Bodén (2002)
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Comparison

Language Model Incremental Lexical Distance Speed

n-gram Y Y Short Fast

Class Y N Medium Fast

Cache Y Y Long Fast

Skip Y Y Medium Fast

PCFG N N Long Slow

Topic Y N Long Slow

FF-NN Y Y Medium Slow

RNN Y Y Medium Slow

Fine print goes here. No purchase necessary. Void where prohibited. Medium distance here is longer than a typical n-gram history length (eg. 5-gram), but isn’t the full sentence history. Elman network-based LMs aren’t trained using the full sentence history due to BPTT, and a word’s effect decays over time. While advances have been made in improving softmax normalization, models that use it are still orders of magnitude slower at training than a typical generative model. Induced PCFG (eg. Baker (1979), Lari & Young (1990,1991), Hänig et al (2008), Hänig (2010)) are costly to train from unannotated texts.
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