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Too Many Words!

• Languages have too many words for statistical models of
language

• We need some way to generalize them

• Let’s treat some words like other words
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• Words can be grouped together into equivalence classes to
help reduce data sparsity and better generalize the data.

FridayThursday

Wednesday

Monday
Tuesday

SundaySaturday

Microsoft

Google

Apple

Sony

Yahoo

OracleNintendo

• Hand-crafted equivalence classes are called part-of-speech
tags, and automatically induced equivalence classes are
usually called word classes or word clusters
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Parts of Speech and Word Clusters

• Part-of-speech example:

Pierre Vinken , 61 years old , will join the board
NNP NNP , CD NNS JJ , MD VB DT NN

• Word cluster example:

Pierre Vinken , 61 years old , will join the board
344 0 283 94 348 274 283 367 360 71 390

Differences:

• Parts of speech have human-readable labels (eg. NN, VB),
while word clusters usually just have numbers

• A word can have more than one part of speech (which depends
on the context), while a word usually has just one word class
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Supervised, Unsupervised, Semi-supervised Learning

• Supervised learning uses manually-annotated data

• It’s usually evaluated on accuracy (or related idea) of ‘correct’
label, given unannotated test input

• The data’s
1

usually expensive and small

• Unsupervised learning uses unannotated data

• It’s usually evaluated on the probability of the unannotated
test input (∝ perplexity), or a downstream task

• The data’s usually big and noisy. Just like the world around us.

• Semi-supervised learning uses both unannotated and annotated
data

• It’s usually evaluated just like supervised learning tasks

That’s right: “data is” .
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Words vs. Word Classes

• Using word classes reduces the number of parameters in
language models, which means generalization

• But, some sequences of words are lexicalized, meaning they
are based on the specific words involved

• For example: “ It’s raining cats and ”

• Using word-based language models, the next word will
probably be ‘dogs’

• But class-based LMs only see something like “ PRP VBZ VBG
NNS CC ”

• So they would predict something like ‘shares’, if they were
trained on the WSJ corpus
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How Many Word Classes Should I Use?

The more word classes you use, the closer you get to a
word-based model

If you use a class-based LM by itself, more word classes is
usually better, especially if you have a lot of training data

However if you interpolate a class-based LM with a
word-based LM, fewer word classes is usually better, because
you get complementary information

7 / 19



How Many Word Classes Should I Use?

The more word classes you use, the closer you get to a
word-based model

If you use a class-based LM by itself, more word classes is
usually better, especially if you have a lot of training data

However if you interpolate a class-based LM with a
word-based LM, fewer word classes is usually better, because
you get complementary information

7 / 19



How Many Word Classes Should I Use?

The more word classes you use, the closer you get to a
word-based model

If you use a class-based LM by itself, more word classes is
usually better, especially if you have a lot of training data

However if you interpolate a class-based LM with a
word-based LM, fewer word classes is usually better, because
you get complementary information

7 / 19



How Can You Cluster Words?

• If you represent words as vectors of real numbers, you can use
general clustering algorithms like k-means clustering or
agglomerative clustering

• You can also use discrete versions of these two algorithms, to
cluster words directly from plaintext

• Discrete agglomerative word clustering is usually called
Brown clustering

• Discrete k-means word clustering is usually called exchange
algorithm clustering
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Brown Clustering (hierarchical clusters)

1. Assign the most frequent words to their own class

2. For the remaining words, assign the next most frequent word
to the class giving the best likelihood of the training data

3. There is no step 3.

4. Optionally recursively merge the remaining classes, again
based on likelihood

• Above is Percy-style Brown clustering, which can be more
efficient than the original algorithm

• The time complexity is O(|V | × |C |2)

• |V | is the size of the vocabulary
|C | is the number of word classes

• Thus it’s fairly fast for small clusters (< 400), but slow for
large clusters (> 800)
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Exchange Algorithm (flat clusters)

1. Randomly assign each word to a class

2. For each word, change its word class to the one giving the
best likelihood of the training data

3. Do the last step for a few times (maybe 10–20 iterations)

• Thus the basic time complexity is O(|V | × |C | × i)

• |V | is the size of the vocabulary
|C | is the number of word classes
i is the number of iterations

• There’s a little more added complexity is how you calculate
training-set likelihood
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Class-based Language Models

• So how do we use word classes as a language model?

• The most common form (ci is the word class of word wi ):

P(wi |wi−1) , P(wi |ci )P(ci |ci−1)

<s> PRP

it

VBZ

’s

VBG

raining

NNS

cats

CC

and

• Notice ci , which is called a bottleneck variable

• The history is ‘squeezed’ through this point, in order to
summarize and generalize the history
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Predictive Exchange and Conditional Exchange

• The previous model is used in both Brown clustering and
exchange algorithm clustering to determine the likelihood of
the training set. We can use different models as well.

• The predictive exchange algorithm uses this model:

P(wi |wi−1) , P(wi |ci )P(ci |wi−1)

• The conditional exchange algorithm uses this model:

P(wi |wi−1) , P(wi |ci−1)
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Uses of Word Clusters

Machine Translation

• Word alignment (Brown et al, 1993; Och & Ney, 2000)

• Factored/class-based translation models (Koehn & Hoang, 2007; inter alia)

• Reordering models (Cherry, 2013)

• Preordering (Stymne, 2012)

• Target-side inflection (Chahuneau et al, 2013)

• Syntax-augmented machine translation (Zollmann & Vogel, 2011)

• Sparse word features (Haddow et al, 2015)

• Operation sequence models (Durrani et al, 2014)

Other NLP Tasks

• Training Neural Net Lang. Models (Goodman, 2001; Mnih & Hinton, 2009; ...)

• Parsing (Koo et al, 2008; Candito & Seddah, 2010; Kong et al, 2014)

• Semantic Parsing (Zhao et al, 2009)

• Chunking (Turian et al, 2010)

• NER (Miller et al, 2004, inter alia)

• Tagging of Twitter Feeds (Owoputi et al, 2013; Nooralahzadeh et al, 2014)

• Structure Transfer (Täckström et al, 2012)

• Discourse Relation Discovery (Rutherford & Xue, 2014)
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