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Kelsey and other Grammers
• A grammar here is another word for a language model
• They consist of four sets G = 〈Σ,N,S ,P〉

terminals – word types; lowest nodes in syntax trees
Examples: dog, the, eats

non-terminals – phrasal types; middle nodes in syntax trees
Examples: VP, DET, NP

start symbol – “S”; the top node in syntax trees

production rules – recursive symbol substitutions
Examples:

S → NP VP

NP → DET N

NP → ADJ N

VP → V NP

VP → V

N → dog

N → cat

V → barks

DET → the
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Visualization

• Sentences are often visualized using derivation trees, also
known as parse trees or syntax trees

• Example:

S

VP

PP

NP

N

mat

DET

the

P

on

V

sat

NP

N

cat

DET

the

S → NP VP

NP → DET N

DET → the

N → cat

VP → V PP

V → sat

PP → P NP

N → mat

• Originally these trees were mere visualizations of how you
could generate a grammatical sentence, given a grammar

• Then people started to think of these trees as the actual
structure of a sentence

• Confusion ensued
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Context-free Grammars

• A context-free grammar (CFG) is a generative model that
can generate context-free languages, which are somewhere in
the middle of the formal language hierarchy

• Many, but not all, phenomena in natural languages can be
generated by CFGs

• Context-free production rules have the general form of a
non-termal rewriting to a sequence (string) of terminals
and/or non-terminals (A→ α)

• CFGs can generate and recognize center embedding, but not
more complex word order phenomena, so effectively CFG
parse trees have no crossing lines

• Non-projective dependency grammars are more or less
equivalent to CFGs (they have the same weak generative capacity)
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Treebanks

• It’s a lot of work to define a language model by hand
(including context-free grammars), so another way is to
annotate treebanks

• Example: (S (NP (DET the) (N cat))(VP (V sat)(PP (P
on)(NP (DET the) (N mat)))))

• There are treebanks for about 10–20 languages, the Penn
Treebank being the most well-known for English

• Treebanks can be annotated with various grammatical
annotations, like constituency / phrase-structure (as
above), dependency grammar (as we saw last class),
categorial grammar, HPSG, etc.

• Most of these annotation styles can be approximately mapped
to other styles

• Here is a link to a list of syntactic treebanks

5 / 10
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PCFGs

• We can induce a probabilistic context-free grammar
(PCFG) from the treebank

• With multiple annotated sentences, we can get probabilities
for production rules. Example:

1.0 S → NP VP
0.6 NP → DET N
0.4 NP → ADJ N
0.7 VP → V NP
0.3 VP → V
0.8 N → dog
0.2 N → cat
1.0 V → barks
1.0 DET → the

• Notice that the probabilities for each left-hand side must sum
to one (unity)
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Parameter Estimation

• So how do we get these probabilities?

• If we have a treebank, we can start with just counting how
often productions occur (maximum likelihood estimation)

• If we don’t have a treebank, we can still use unannotated text,
and apply the inside-outside algorithm

• The inside–outside algorithm is just the
expectation–maximization (EM) algorithm applied to trees

• We start by randomly initializing probabilities to all possible
rule productions, then use EM to search for good rule
probabilities that maximize the likelihood of the training set
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Inside-Outside Algorithm

• The inside–outside algorithm uses inside- and
outside-probabilities:
• Inside probability: βj(p, q) = P(wpq|N j

pq,G )

• Outside probability: αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G )

Image courtesy of Manning & Schütze (1999), figure 11.3 .
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String Probabilities

• We use the inside probability of the entire sentence to get the
probability of that sentence:

P(w1m|G ) = P(N1 ∗=⇒ w1m|G ) = β(1,m)

• Inside probabilities are calculated recursively &
compositionally for each rule production

• We can do this because rule productions in context-free
grammars are, well, context-free!

• Probabilities of ambiguous parses at a given non-terminal are
summed, since either parse could have produced the final
substring
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PCFGs vs. n-gram Language Models (Lexicalized
Probabilistic Regular Grammars)

• PCFGs can better handle long-distance dependencies like
subject-verb agreement and filler-gap dependencies

• PCFGs usually give worse perplexity than n-gram LMs. Why?

Mostly because PCFGs are unlexicalized – they use
pre-terminals (word classes / POS tags). Thus they fail to
account for local co-occurrences like multiword expressions
and proper names.

• PCFGs take longer to train

• PCFGs need manually-annotated treebanks to give decent
results

• PCFG parsers (eg. CKY) are usually not incremental
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