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Good Morning!

2 / 12



Softmax Normalization
• The slowest part of training a

neural net LM is softmax
normalization

• Why? Before the softmax layer
(final layer) we just have a real
number, not a probability

• So we need to know the sum of
scores for all possible words being
predicted (ie. the normalization
constant)
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• This involves |V | steps, where |V | is the size of the vocabulary

• Typical values of |V | are between 10K to 10M

• We must do this for every word in our training set (eg.
1M–1B), every epoch (> 10)
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Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries
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Neural Networks for Sequential Data

• Feedforward (FF) networks only indirectly deal with sequential
data (like language)

• FF Neural LMs are basically ‘soft’ n-gram LMs – their history
is still fixed

• The model needs to ‘remember’ a longer history, with loops
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Recurrent Neural Networks

A neural net with loops is called recurrent

• The current hidden layer of the
model is based on both the current
word and the hidden layer of the
previous timestep

• This is implemented by copying the
hidden layer to another layer,
overwriting the existing weights

• This specific RNN is called an
Elman network (or simple RNN
/ SRN)

Output

State/Hidden

Input Previous State

W

V

U

Copy (delayed)

• To train an RNN, we first need to ‘unroll’ the loops
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Training RNNs with BPTT
• Backpropagation through time (BPTT) trains RNNs by

unrolling the most recent part of the loop
• Now the network is feedforward
• Below is an example of an unrolled RNN using last 3 states (τ = 3)

Output

State/Hidden

Input State/Hidden (t − 1)
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Output
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Problems with Elman Networks / SRNs

• The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

• and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)

∗

• This leads to instability, and bad results

• What if we had another neural network help the first network
learn long-distance relationships?

• That’s basically what we do when we add more weight
matrices to a neural network

• As you might guess, that’s what we’re going to do ...

∗ The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number.
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Long Short-term Memory

• A long short-term memory (LSTM) network adds more
weight matrices to function as soft ‘memory gates’, so that
long-distance phenomena in our data can be held in the
network over multiple timesteps

• Input gate: it = σ(Wixt + Uiht−1 + bi )
• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• Forget gate: ft = σ(Wf xt + Uf ht−1 + bf )
• Memory state: Ct = it � C̃t + ft � C̃t−1

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Output: ht = ot � tanh(Ct)

Image courtesy of a nice tutorial at http://deeplearning.net/tutorial/lstm.html. Another nice tutorial is at https://colah.github.io/posts/2015-08-Understanding-LSTMs. The symbol � is the Hadamard product (a.k.a. elementwise multiplication), which just multiplies corresponding elements of two matrices and returns another matrix of their products.
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Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs

Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209
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Gated Recurrent Units (GRUs)
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget
and output gates, respectively. c and c̃ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and h and h̃ are the activation and the candidate activation.

• Gated recurrent units (GRUs) are very similar to LSTMs,
but are a little simpler

• GRUs merge the forget and input gates into a single update
gate

• GRUs also merge the hidden state and the cell state

• Both LSTMs and GRUs achieve similar performance on many
tasks

Image courtesy of http://arxiv.org/pdf/1412.3555v1.pdf
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Rube Goldberg Network
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