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Extending Logistic Regression (=Softmax Regression)
• Recall that logistic regression involves the dot product of an input

vector and a weight matrix, then a normalized sigmoid function

(softmax)

• A feedforward neural network just adds one or more layers
between the input vector and the softmax output
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Why Use Hidden Layers?

• In contrast to log-linear models, neural networks can have
non-linear representations of data

• The universal approximation theorem (George Cybenko,
1989) found that a neural network with one hidden layer can
approximate any continous function

• A network with two hidden layers can represent discontinuous
functions

Courtesy of mql5.com
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Activation Functions (σ)
In each layer, the output of the dot product goes through an
activation function (σ). Here are some examples:

Name Visualization f(x) = Notes

Linear (= Identity) x Not useful for hidden layers

Heaviside Step
{

0 if x < 0
1 if x ≥ 0 Not differentiable

Rectified Linear (ReLU)
{

0 if x < 0
x if x ≥ 0 Surprisingly useful in practice

Tanh 2
1+e−2x − 1 A soft step function; ranges

from -1 to 1

Logistic (‘sigmoid’) 1
1+e−x Another soft step function;

ranges from 0 to 1

Softmax eW y ·x

Z
Normalized sigmoidal func-
tion. Useful for last layer when
training on cross entropy

List of activation functions in Keras: keras.io/activations
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Training Neural Networks

• At a high level, the weights in a neural net are set by means of
the blame game – whenever it guesses incorrectly, change the
weights that were the most responsible for making that guess

• Whenever the network guesses a training instance correctly,
don’t change anything

• The weights are usually trained by a form of the gradient
descent optimization algorithm

• The gradients are calculated by error backpropagation

• First, do a normal forward pass through the network, to
determine the error/loss (how different the output was from
the ‘correct’ answer)

• Then, do a backwards pass (end to start), changing the
weights to minimize errors
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Loss / Objective Functions

• Discrete Outputs:
• Binary Cross-Entropy (0-1 loss): 0 if correct, 1 if incorrect
• Categorical Cross-Entropy: good old cross-entropy. Eg.

0 if p(y) = 1.0,
1 if p(y) = 0.5,
2 if p(y) = 0.25,
3 if p(y) = 0.125,
...

• Continuous Outputs:
• Mean Squared Error (MSE): 1

n

∑n
i=1(ŷi − yi )

2

• Root Mean Squared Error (RMSE):
√
MSE

• Mean Absolute Error (MAE): 1
n

∑n
i=1 |ŷi − yi |

List of loss functions in Keras: keras.io/objectives
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Autoencoders
• An autoencoder is a neural network where the size of the

output layer is the same size as the input layer
• The hidden layers are usually smaller
• The goal is to generalize the training data
• Since no labeled data is necessary, autoencoders are an

unsupervised learning technique
• Autoencoders trained on language data are neural language

models

• Autoencoders are occasionally called diabolo networks

Image courtesy of Wikimedia
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Tips & Tricks (discussed in class)

• Network depth

• Layer size

• Dropout

• Early stopping

• Optimizers

• Learning rate
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Software

• Most popular neural net software are based on the following:

Name Lang Support GPU Support Who
Theano Python Yes Uni Montreal
TensorFlow Python, C++ Yes Google
Torch Lua Yes FB, Twitter, etc.
DL4J Java, Scala Yes Skymind.io
CNTK C++ Yes Microsoft

• Many others: Caffe, MXNet, Chainer, CNN

• We’ll use Keras (keras.io), which is really easy and intuitive.
It can use either Theano or TensorFlow as a backend.
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