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Extending Logistic Regression (=Softmax Regression)

e Recall that logistic regression involves the dot product of an input
vector and a weight matrix, then a normalized sigmoid function
(softmax)
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Why Use Hidden Layers?

e In contrast to log-linear models, neural networks can have
non-linear representations of data

e The universal approximation theorem (George Cybenko,
1989) found that a neural network with one hidden layer can
approximate any continous function

e A network with two hidden layers can represent discontinuous
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Activation Functions (o)

In each layer, the output of the dot product goes through an
activation function (o). Here are some examples:

Name Visualization  f(x) = Notes
Linear (= Identity) X Not useful for hidden layers
Heaviside Step {9 % X9 Not differentiable
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X

2
Tanh / Tre—2

Logistic (‘sigmoid’) T =
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Surprisingly useful in practice

A soft step function; ranges
from-1to 1l

Another soft step function;
ranges from 0 to 1

Normalized sigmoidal func-
tion. Useful for last layer when
training on cross entropy
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Activation Functions (o)

In each layer, the output of the dot product goes through an
activation function (o). Here are some examples:

Name Visualization  f(x) = Notes

Linear (= Identity) X Not useful for hidden layers
Heaviside Step {9 & X8 Not differentiable

Rectified Linear (ReLU) i {3 i x<%  Surprisingly useful in practice

Tanh / He%zx -1 A soft step function; ranges

T from -1 to 1
Logistic (‘sigmoid’) T He% Another soft step function;
ranges from 0 to 1
Softmax IR sl evay« Normalized sigmoidal func-

tion. Useful for last layer when

training on cross entropy
List of activation functions in Keras: keras.io/activations
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Training Neural Networks

e At a high level, the weights in a neural net are set by means of
the blame game — whenever it guesses incorrectly, change the
weights that were the most responsible for making that guess
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Training Neural Networks

At a high level, the weights in a neural net are set by means of
the blame game — whenever it guesses incorrectly, change the
weights that were the most responsible for making that guess

Whenever the network guesses a training instance correctly,
don't change anything

The weights are usually trained by a form of the gradient
descent optimization algorithm

The gradients are calculated by error backpropagation
First, do a normal forward pass through the network, to

determine the error/loss (how different the output was from
the ‘correct’ answer)

Then, do a backwards pass (end to start), changing the
weights to minimize errors



Loss / Objective Functions

¢ Discrete Outputs:

e Binary Cross-Entropy (0-1 loss): 0 if correct, 1 if incorrect
e Categorical Cross-Entropy: good old cross-entropy. Eg.

0 if p(y) = 1.0,
1if p(y) = 0.5,
2 if p(y) = 0.25,
3 if p(y) = 0.125,

e Continuous Outputs:
e Mean Squared Error (MSE): £ 37
SE

D7
e Root Mean Squared Error (RMSE): \/7
e Mean Absolute Error (MAE): %Z i

yi)?
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e Root Mean Squared Error (RMSE): \/7
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List of loss functions in Keras: keras.io/objectives
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Autoencoders

An autoencoder is a neural network where the size of the
output layer is the same size as the input layer

The hidden layers are usually smaller

The goal is to generalize the training data

Since no labeled data is necessary, autoencoders are an
unsupervised learning technique

Autoencoders trained on language data are neural language
models
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Autoencoders

An autoencoder is a neural network where the size of the
output layer is the same size as the input layer

The hidden layers are usually smaller

The goal is to generalize the training data

Since no labeled data is necessary, autoencoders are an
unsupervised learning technique

Autoencoders trained on language data are neural language
models

Autoencoders are occasionally called diabolo networks
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Tips & Tricks (discussed in class)

Network depth
Layer size
Dropout

Early stopping
Optimizers

Learning rate



Software

e Most popular neural net software are based on the following:

Name Lang Support GPU Support Who

Theano Python Yes Uni Montreal
TensorFlow Python, C++  Yes Google

Torch Lua Yes FB, Twitter, etc.
DL4J Java, Scala Yes Skymind.io

CNTK CH++ Yes Microsoft


http://www.deeplearning.net/software/theano
https://www.tensorflow.org
http://torch.ch
http://deeplearning4j.org
http://skymind.io
https://github.com/Microsoft/CNTK
http://caffe.berkeleyvision.org
https://github.com/dmlc/mxnet
http://chainer.org
https://github.com/clab/cnn
http://keras.io
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Software

e Most popular neural net software are based on the following:

Name Lang Support GPU Support Who

Theano Python Yes Uni Montreal
TensorFlow Python, C++  Yes Google

Torch Lua Yes FB, Twitter, etc.
DL4J Java, Scala Yes Skymind.io
CNTK CH++ Yes Microsoft

e Many others: Caffe, MXNet, Chainer, CNN

o We'll use Keras (keras.io), which is really easy and intuitive.
It can use either Theano or TensorFlow as a backend.
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