
Language Technology I, Winter 2015-2016

Exercise 10: Recurrent Neural Network Language
Models

You can earn up to 10 points on this exercise.
You may work as a group of up to 3 people, but please submit your own version.
You will be using python based library keras for this assignment.
Please submit all the code required to run the neural networks on our machines.
Please state any assumptions you make
Any submission that we cannot run on our computers without installing things, must be presented
in the class

Please email your solution to mittul.singh@lsv.uni-saarland.de by 10:15 am, January
29, 2016. While submitting your assignment by email, please name the file as Ex10_<your
name>.pdf/zip/tar.gz .

Task

In this task you are required to build parts of a recurrent neural network (RNN) language model
(LM) provided at https://bitbucket.org/mittulsingh/10-rnn-assignment. The code is
written in python, using keras library to implement a neural network based LM. The training
algorithm uses a recent gradient descent method called ADAM. The training method has also
been changed to chunk and batch process the data to allow it to handle larger amounts of data
than the previous assignment. Hope you have installed keras and h5py already! The sub tasks
to building and using this neural network are as follows:

1. Please join the google group to follow any bugs fixes and related discussions. (0 points)

2. Process the data used in Assignment 4’s Task 2. Carry out the first three steps as described
in Assignment 4’s Task 2 for the first 10000 lines of text only. After completing these
steps you should have 241924 words in en.txt 1. In case you do not, you might have an
encoding issue. Try setting $LC_CTYPE to en_US.UTF-82 and re-doing the steps. (0 points)

3. Construct a vocabulary of words. Use the data from the previous step to construct
a vocabulary of 10000 most frequent words (say, en.voc), with each unique word in
a separate line. This format is essential for use in the RNN code provided. (Hint:
use get_word_list_count.sh tool available at https://bitbucket.org/mittulsingh/10-
rnn-assignment) (0 points)

4. Split the resulting corpus into training/development/test sets, with the ratio 18:1:1 respec-
tively, using the script http://jon.dehdari.org/corpus_tools/generate_splits.pl .
Use the –-help argument for usage info. You should have 218358 words in the training
set, 11727 words in the development set and 11839 words in the test set. (0 points)

1Use the command wc on bash to count words
2Learn to set environment variables this http://www.cyberciti.biz/faq/set-environment-variable-linux/

https://bitbucket.org/mittulsingh/10-rnn-assignment
http://arxiv.org/abs/1412.6980
https://groups.google.com/forum/?hl=en#!forum/lt1-assignments
https://bitbucket.org/mittulsingh/10-rnn-assignment
https://bitbucket.org/mittulsingh/10-rnn-assignment
http://jon.dehdari.org/corpus_tools/generate_splits.pl
http://www.cyberciti.biz/faq/set-environment-variable-linux/

5. Add sentence markers. Put a "<s>" (sentence begin marker) at the beginning of every
sentence and a "</s>" (sentence end marker) at the end of every sentence in the train-
ing/development/test sets. Convert these files into files with a word on each line. Lastly,
add the sentence markers to the vocabulary. These steps is to conform with the input data
format of the provided code. (0 points)

6. Handle out of vocabulary words (OOVs). You might have noticed above that the number
of unique words are much larger than the number of words in vocabulary (10002 at this
point). For all the unaccounted words we need to map them to an unknown symbol. Add
an <unk> symbol to the vocabulary and rest is taken care of by the code. You can specify
this symbol in the toolkit using -unk flag. (0.5 points)

7. Build a RNNLM. To be able to build a RNNLM, you will need to write a few lines of
code in the build function of the file rnnlm.py. This part will be evaluated on the code
you submitted. (Hint: You might want to use an keras.layers.embeddings.Embedding and
keras.layers.recurrent.SimpleRNN in conjunction to build the RNN) (2 points)

8. Plot the perplexity of the model obtained from the previous part on dev set and test set
against the 10, 50, 100, 500, 1000, 5000 and 10003 units as the size of the Embedding
layer. For a network of 200 hidden nodes, run the training for 2 epochs, with a batch size
of 2000 and a chunk size of 10000. A good choice of learning rate and epsilon are 0.001 and
1e-08 respectively. These values also happen to be the defaults of your algorithm. Discuss
the plot and note any observations you make. (2 points)

9. Build an LSTM based LM and a GRU based LM. This part will be evaluated on the code
you submitted. (2 points)

10. Plot the training times of RNNLM, LSTM and GRU based LMs for 10, 50, 100, 500,
1000 and 2000 as batch sizes used during the training. For rest of the parameters, use the
optimal value of Embedding layer and the values mentioned in sub-part 4 to initialize your
tools. Compare and discuss the results. (1.5 points)

11. Plot the perplexity of RNNLM, LSTM based LM and GRU based LM on dev set and test
set against the variation of the size of the hidden layer. Initialize the tool with the optimal
Embedding layer size and the values mentioned in sub-part 4. Compare and discuss the
results. (2 points)

