Dependency Parsing

Language Technology 1
WS WS 2015

Gunter Neumann

* Overview

« Dependency Grammar vs Dependency Parsing

. Transition-Based vs Graph-Based Dependency Parsing

N Syntactic Theories

HEAD (6]
SPEC ()

~ ~

- \’\\
- ~
~ ~
prd .
Fm—:.m @ HEAD [0
,spug 0 sPEC <ﬂ>
//// \\ COMPS ()
// ~ . . ////\\ §
~ Y
PHON ‘the’ PHON ‘dog //// .
o EAR [(‘AT D] cat N /; \\\\
SPEC () HEAD 2| [PERS 3 o
comps () @ : NUM sx;] PHON “bites o|HEAD @
HEAD _{(\r v] SPEC ()
SPEC <E[uu,\b [Cl\'r DH> ///\\
cat N - \\
CoMPS () SPEC @ HEAD G vas ? ~ .
NU" 5" PHON ‘the’ PHON ‘men’
"r\l) [(‘:\T [)] CAT N
COMPS <#nt/\b [(‘\T N] SPL(0 HEAD E,\GR [PERS 3]
comps () NUM PL
SPEC <1{I{EAD [('/\T D]]>
CoMPS ()
obj pC
amod Sbj nmod |nmod nmod

|

Economic news had

|]

little effect on financial markets

[auxtype : have
fin : +
pred: SEE(subj, comp)
case: nom
num: s
subj: &
pers: I
ntype : prn
[fin :
pred : CRASHINTO(subj, oblinwo)
5 pred : CAR
comp : subj : s
case :nom
pr— [pred : TRAF I.IGHT]
" |pred: INTO(obj)
oy /s \
np | vp a3 np
‘lr as> d d .l ri.
left the boy
Bse vp

N Dependency Representation

« The basic idea:
Syntactic structure consists of lexical items, linked by
binary, asymmetric, directed, anti-reflexive, anti-transitive,
labeled relations called dependencies.

« A— B;<B,A>

(A 1s head/parent/governor; B is dependent/child/
subordinate)

« Syntactic structures are usually trees, i.e. they have the
following properties:
connectedness, single-headiness, rooted, acyclicity,
(projectivity)

Connected, A-cyclic, Single-head

- A syntactic structure is complete (connected)

A syntactic structure is hierarchical (acyclic)

- Each word has at most one head (single head)

- Adding a special root-node can enforce connectedness.

p
pred obj pc
nmod sbj nmod [nmod nmod

root Economic news had little effect on financial markets .

Example of a Projective
Dependency Tree

VB

shj / p
. obj
NN PU

nmod . - nmod NN nmod
/ : : e : AN
JJ | 5 JJ ; IN pc

nmod NNS

e

Economic news had little effect on financial markets

J)

-
Nonprojective Syntax

A YN YY)

ROOT ‘Il ~give talk tomorrow on bootstrapping
ROOT ista meam norit gloria canitiem
thatyow MYacc may-know glorynom going-grayacc

That glory shall last till | go gray

Slide from Smith & Smith, EMNLP, 2007

T Dependency Grammar

. History:
ancient Greek, Sanskrit, Latin, Arabic, medieval Europe, 1900s

. Problematic phenomena:
coordination, no groupings, auxiliaries

o Variations:

single vs. multiple layers (morphology, syntax), different tagsets
and structures (Stanford vs. CoNLL)

Dependency Parsing

m The problem

= [nput:
sentence x = wo, W1, . .., Wn With wo = root

= Output:
dependency graph G = (V, A) for x whereby:

mV={01,..., n} is the node set

m Ais the edge set, i.e., (i,], k) € Arepresents a dependency from w;
to w; with label Ik € L

*Parsing

Economic news had little effect on financial markets

|
—l

Economic news had little effect on financial markets

l

TR | e T

Economic news had little effect on financial markets

P

obj ole

nmod sbj nmod | nmod nmod

Y
Economic news had little effect on financial markets

y

N Dependency Parsing

Easy to implement
. No artificial (non-terminal) nodes

. Linear complexity possible (deterministic parsing)

Easy to evaluate

. Attachment scores are very straightforward

Very expressive

. Suitable for free word order languages

Useful representations

. Very close to semantics, which is very often done next

N Applications

. Almost any language technology can profit from dependency
parsing:
. Machine Translation
. Information Extraction
. Textual Entailment
o Question Answering
. Summarisation

« Text Generation

* Grammar vs. Data-Driven

o Rule systems:
. Lists of words for every category
- Which categories occur with which categories
. Valency

« Data-driven systems:
« Use tree banks to learn how to link words

. Dependency tree banks are available for many languages (CoNLL-X
shared task)

T Transition-Based vs. Graph-Based

. Two predominant parser types
. similar performance

. completely different approaches

« Transition-based:

. the result is constructed after a series of transitions (local decisions)

« Graph-based:

. the result is constructed in few steps (global decisions)

. Details from here:
http://www.ryanmcd.com/courses/esslli2007/esslli4.pdf

T Graph-Based Parsing

« Giventhe inputl=w, ,w,,... ,w_,where each word corresponds to
anode v,,V,, ... ,vn’find a graph G= (V, A), such that G is a rooted
tree and A = {<A,B,>, <A,,B,>,..., <A ,B_>} corresponds to the
correct dependency tree.

« Solution: Maximum Spanning Trees (MST) (the tree with the highest
weight)

* Chu-Liu-Edmonds

x = root John saw Mary Find highest scoring incoming arc for each vertex

/9 root

/ root 10 P p—

9 20 "E‘lw"* 30 / j‘“" \

\, /N \ John 30 Mar
John __ 30 0 __ Mary y Y

S/
3 If this is a tree, then we have found MST!!

If not a tree, identify cycle and contract

Recalculate arc weights into and out-of cycle

/9

root 40
2 S
,/” _saw | 30
/z’ "w.js/,// \
t John .- Mary

_’,‘\ 31/

Taken from Introduction to Data-Driven Dependency Parsing (Ryan McDonald, Joakim Nivre)

Edmonds Algorithm

« For all nodes (modulo root node): Choose th
best incoming edge

. Repeat (greedily) until the graph contains no a
cycle

- Consider each cycle as a virtual node. Compute
modified edge weights for all edges which enter the
cycle from outside

. Idea: distribute (add) weights of edges of cycle to
the incoming edges of the virtual node, e.qg.,

- w_n(root,saw) = w(root,saw) + w(saw,john)
- 40=10+ 30

T Graph-Based Parsing

« Advantages:
. State-of-the art performance

. Works well for long sentences/dependencies

. Disadvantages:

« Not incremental

. Computationally expensive (Chu-Liu-Edmonds need O(n*n) to find
MST)

T Transition-Based Parsing

« The parse of the sentence is a sequence of operations
(transitions)

. The result is a complete set of dependency pairs, which
satisfy tree constraints

« An oracle tells the parser what action should be taken in
every step:

. Training - use training data for simulating a perfect oracle (you
have the desired result given)

. Application - use classifiers for simulating an oracle (train
models, that allow the oracle to choose correct actions)

+

Transition System

m Given the inputI =w;,w,,...,w, perform S = c,c,...,c,,such
that
A={<A,B,> <A,,B,>,..., <A_,B_>} corresponds to the
correct dependency tree

m Configuration — state of the parser
m Define the set of possible transitions, e.qg.: left_link(a, b)
m Conditions (permissibility):

m b should not have a parent;if <a, b> is added to A, A should
not contain a cycle etc.

m Effects:
m left_link(a,b) — a becomes the parent of b
m right_link(a, b) — b becomes the parent of a
m shift(a, b) = move on to next pair

m Initial configuration / terminal configuration

* Parsing Algorithms

. Naive:
. For every word j in the sentence try to combine it with other
words I in the sentence (i <j):

. Possible operations:
make j the parent of 1
make i the parent of j
do not combine and j+1,1=0
do not combine and i+1
Initial state: Start with the first word
Terminal state: j > sentence length

. Nivre (Arc-Eager, Arc-Standard)

. Covington's parsing strategy

Ex: ,John;saw,Mary,.,

Co:j =1;1=0, A = {}:initial state

c : do not combine;i+1

: do not combine; i+l

: make i the parent of j;

¢, — ¢,:do not combine; i+1

3

: do not combine; i+l

c,—cC

¢, — c,: do not combine; j+1

: make i the parent of j

¢, — ¢g:do not combine; i+1

c, — C,: do not combine; i+1

8

C, — C,,: do not combine;i+1

C,, — ¢,,: make j the part of i

10

C,; — C,,: do not combine;i+1

G=l,i=1,A={}) C,, = C,;: make j the part of i (G=2,i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})
G=1,i=2,A={}) ¢,; — ¢, donot combine;j+1 (j=3,i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})
G=1,i=2, A = {<1,2>}) ¢,, — €, do not combine;i+1 (G=3,i=1, A = {<1,2>,<2,0>, <3,2>,<4,2>})
(G=1,i=3,A = {<1,2>}) C,5 — C,5: do not combine;i+1 (G=3,i=2, A = {<1,2>,<2,0>, <3,2>,<4,2>})
(G=1,i=4,A = {<1,2>}) C,s — C,;+ do not combine;i+1 (j=38,i=38, A = {<1,2>,<2,0>, <3,2>,<4,2>})
(=2,i=0, A = {<1,2>}) C,; — C,g: do not combine;i+1 (j=3,i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})

(=2,i=0,A ={<1,2>,<2,0>}) ¢, — c,,: do not combine;j+1 (j=4,i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})

18
(G=2,i=1,A ={<1,2>,<2,0>}) ¢,y — C,,: do not combine;i+1 (G=4,i=1,A = {<1,2>,<2,0>, <3,2>,<4,2>})
(=2,i=2, A = {<1,2>,<2,0>}) C, — C,;: donot combine;i+1 (j=4,i=2, A = {<1,2>,<2,0>, <3,2>,<4,2>})
(G=2,i=3,A ={<1,2>,<2,0>}) ¢, — c,,: donot combine;i+1 (G=4,i=3, A = {<1,2>,<2,0>, <3,2>,<4,2>})

(=2,i=3, A = {<1,2>,<2,0>,<3,2>}) c,, — C,,: do not combine;i+l (j=4,i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})

(=2,1=4, A = {<1,2>,<2,0>, <3,2>}) c,,. terminal configuration

*Naive Algorithm

. Obvious disadvantages:
. Too many senseless configurations

. O(? runtime (if no readings are considered)

. Advantage:

. Simple to implement

* Oracle

« Which transition to chose in which state?

« Every configuration is transformed to a feature vector:
. The history of previous transitions can be used
. Word information and context information is available
. External resources can be used

¥ Feature Models: : oJohn,;saw,Mary..,

. Sample configuration:
. (j=2,i=3,A ={<1,2>,<2,0>})

. Feature templates:
. Word form of token x: wi(x)
. Pos tag of token x: pos(x)
. Distance between tokens x and y: dist(x,y)
. Is token x the root node?: isRoot(x)

o Features:
o wi(2)=saw, wi(3)=Mary, pos(2)=VBD, pos(3)=NNP, dist(2,3)=1,
isRoot(2)=true, wi(l)=John, pos(1)=NNP
o Transition: make j the part of i

. For some learning approaches very complex feature
engineering is required

T Supervised Machine Learning

Compute all feature vectors for all annotated sentences
from training corpus

Print all feature vectors into a file in the format required by
the machine learning method of your choice:

. wifi=Mary posi=NNP wifj=saw posj=VBD link2
. wii=Mary posi=NNP wifj=John posj=NNP shift

« Or
« 1:12:13:14:10
. 1:12:15:16:11
. Define alphabet:
e (1-wifi=Mary;2 - posi=NNP; 3 - wij=saw; 4 - posj=VBD; 5
- wfj=John; 6 - posj=NNP); (O - link2, 1 - shift)

Or Weka ARFF (Weka is a Machine Learning tool box)

* Classification

Instance: wfi=Mary posi=NNP wifj=saw posj=VBD ?

Classes: ¢, — link(1,j), ¢, — link(j,1),c, — shift etc.

Classification:
e Sum(cl)=d1+wl,cl+W2,cl+w3,clwn,cl
° Sum(CZ)=dz+wl,02+wz,cz+wn,02

o sum(cy)=d,tw, Ftw,, +W

c3 n,c3

Highest sum(c].):
- max = max{sum(c,),sum(c,),sum(c,)}

Probability of C;:
. p(cj)=exp(sum(cj)-max)

Normalisation: rlc;)
* b= 2 sump(c,)

* Classification

« sum(c,)=1.323, sum(c,)=-0.119, sum(c,)=-1.204
« The maximum is obviously max=sum(c,)=1.323
o p(c,)=exp(sum(c,)-max)=exp(0)=1

o p(c,)=exp(sum(c,)-max)=exp(-1.442)=0.236

o p(cy)=exp(sum(c,)-max)=exp(-2.527)=0.08

« The sum of all sum(cj) is 1.316. Thus the normalised probability
distribution is:

. p(c)=1_ =0.76
e p(c,)=r2 =0.18

. p(cy)=2% =0.06

N Summary

« Dependency Grammar and Parsing
« Graph-based parsing
. Transition-based approach

. Learning and Classification

