
Dependency Parsing

Language Technology 1
WS WS 2015

Günter Neumann

+Overview

l  Dependency Grammar vs Dependency Parsing

l  Transition-Based vs Graph-Based Dependency Parsing

+Syntactic Theories

+Dependency Representation

l  The basic idea:
Syntactic structure consists of lexical items, linked by
binary, asymmetric, directed, anti-reflexive, anti-transitive,
labeled relations called dependencies.

l  A → B; <B,A>

 (A is head/parent/governor; B is dependent/child/
subordinate)

l  Syntactic structures are usually trees, i.e. they have the
following properties:
connectedness, single-headiness, rooted, acyclicity,
(projectivity)

+
Connected, A-cyclic, Single-head

Economic news had little effect on financial markets .

sbjnmod

obj

nmod nmod nmod

pc

root

pred

p

•  A syntactic structure is complete (connected)

•  A syntactic structure is hierarchical (acyclic)

•  Each word has at most one head (single head)

•  Adding a special root-node can enforce connectedness.

+
Example of a Projective
Dependency Tree

+
Nonprojective Syntax

ista meam norit gloria canitiem ROOT

I give A on bootstrapping talk tomorrow ROOT ‘ll

thatNOM myACC may-know gloryNOM going-grayACC

That glory shall last till I go gray

Slide from Smith & Smith, EMNLP, 2007

+Dependency Grammar

l  History:
ancient Greek, Sanskrit, Latin, Arabic, medieval Europe, 1900s

l  Problematic phenomena:
coordination, no groupings, auxiliaries

l  Variations:
single vs. multiple layers (morphology, syntax), different tagsets
and structures (Stanford vs. CoNLL)

+
Dependency Parsing

n The problem

n  Input:
sentence x = w0, w1, . . . , wn with w0 = root

n Output:
dependency graph G = (V, A) for x whereby:

n  V = {0, 1, . . . , n} is the node set

n  A is the edge set, i.e., (i , j , k) ∈ A represents a dependency from wi
to wj with label lk ∈ L

+Parsing

+Dependency Parsing

l  Easy to implement
l  No artificial (non-terminal) nodes

l  Linear complexity possible (deterministic parsing)

l  Easy to evaluate
l  Attachment scores are very straightforward

l  Very expressive
l  Suitable for free word order languages

l  Useful representations
l  Very close to semantics, which is very often done next

+Applications

l  Almost any language technology can profit from dependency
parsing:

l  Machine Translation

l  Information Extraction

l  Textual Entailment

l  Question Answering

l  Summarisation

l  Text Generation

+Grammar vs. Data-Driven

l  Rule systems:
l  Lists of words for every category

l  Which categories occur with which categories

l  Valency

l  Data-driven systems:
l  Use tree banks to learn how to link words

l  Dependency tree banks are available for many languages (CoNLL-X
shared task)

+Transition-Based vs. Graph-Based

l  Two predominant parser types
l  similar performance

l  completely different approaches

l  Transition-based:
l  the result is constructed after a series of transitions (local decisions)

l  Graph-based:
l  the result is constructed in few steps (global decisions)

l  Details from here:
http://www.ryanmcd.com/courses/esslli2007/esslli4.pdf

+Graph-Based Parsing

l  Given the input I = w1, w2, . . . , wn, where each word corresponds to
a node v1, v2, ... , vn , find a graph G= (V, A), such that G is a rooted
tree and A = {<A1, B1>, <A2, B2>, ... , <An, Bn>} corresponds to the
correct dependency tree.

l  Solution: Maximum Spanning Trees (MST) (the tree with the highest
weight)

0

w1 w1

w3

w5 w2

w4

0

w1 w1

w3

w5 w2

w4

+Chu-Liu-Edmonds

Taken from Introduction to Data-Driven Dependency Parsing (Ryan McDonald, Joakim Nivre)

+
Edmonds Algorithm

l  For all nodes (modulo root node): Choose the
best incoming edge

l  Repeat (greedily) until the graph contains no a
cycle

l  Consider each cycle as a virtual node. Compute
modified edge weights for all edges which enter the
cycle from outside

l  Idea: distribute (add) weights of edges of cycle to
the incoming edges of the virtual node, e.g.,

-  w_n(root,saw) = w(root,saw) + w(saw,john)

-  40 = 10 + 30

+Graph-Based Parsing

l  Advantages:
l  State-of-the art performance

l  Works well for long sentences/dependencies

l  Disadvantages:
l  Not incremental

l  Computationally expensive (Chu-Liu-Edmonds need O(n*n) to find
MST)

+Transition-Based Parsing

l  The parse of the sentence is a sequence of operations
(transitions)

l  The result is a complete set of dependency pairs, which
satisfy tree constraints

l  An oracle tells the parser what action should be taken in
every step:

l  Training - use training data for simulating a perfect oracle (you
have the desired result given)

l  Application - use classifiers for simulating an oracle (train
models, that allow the oracle to choose correct actions)

+
Transition System

n  Given the input I = w1,w2, . . . ,wn perform S = c0, c1, …, cn, such
that
A = {<A1, B1>, <A2, B2>, ... , <An, Bn>} corresponds to the
correct dependency tree

n  Configuration – state of the parser
n  Define the set of possible transitions, e.g.: left_link(a, b)
n  Conditions (permissibility):

n  b should not have a parent; if <a, b> is added to A, A should
not contain a cycle etc.

n  Effects:
n  left_link(a, b) → a becomes the parent of b
n  right_link(a, b) → b becomes the parent of a
n  shift(a, b) → move on to next pair

n  Initial configuration / terminal configuration

+Parsing Algorithms

l  Naïve:
l  For every word j in the sentence try to combine it with other

words i in the sentence (i < j):

l  Possible operations:
make j the parent of i
make i the parent of j
do not combine and j+1, i = 0
do not combine and i+1
Initial state: Start with the first word
Terminal state: j > sentence length

l  Nivre (Arc-Eager, Arc-Standard)

l  Covington's parsing strategy

+Ex: 0John1saw2Mary3.4

n  c0: j =1; i = 0, A = {}: initial state

n  c0 → c1: do not combine; i+1 (j=1, i=1, A = {}) c12 → c13: make j the part of i (j=2, i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c1 → c2: do not combine; i+1 (j=1, i=2, A = {}) c13 → c14: do not combine; j+1 (j=3, i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c2 → c3: make i the parent of j; (j=1, i=2, A = {<1,2>}) c14 → c15: do not combine;i+1 (j=3, i=1, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c3 → c4: do not combine; i+1 (j=1, i=3, A = {<1,2>}) c15 → c16: do not combine;i+1 (j=3, i=2, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c4 → c5: do not combine; i+1 (j=1, i=4, A = {<1,2>}) c16 → c17: do not combine;i+1 (j=3, i=3, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c5 → c6: do not combine; j+1 (j=2, i=0, A = {<1,2>}) c17 → c18: do not combine;i+1 (j=3, i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c6 → c7: make i the parent of j (j=2, i=0, A = {<1,2>,<2,0>}) c18 → c19: do not combine; j+1 (j=4, i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c7 → c8: do not combine; i+1 (j=2, i=1, A = {<1,2>,<2,0>}) c19 → c20: do not combine;i+1 (j=4, i=1, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c8 → c9: do not combine; i+1 (j=2, i=2, A = {<1,2>,<2,0>}) c20 → c21: do not combine;i+1 (j=4, i=2, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c9 → c10: do not combine; i+1 (j=2, i=3, A = {<1,2>,<2,0>}) c21 → c22: do not combine;i+1 (j=4, i=3, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c10 → c11: make j the part of i (j=2, i=3, A = {<1,2>,<2,0>, <3,2>}) c22 → c23: do not combine;i+1 (j=4, i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})

n  c11 → c12: do not combine; i+1 (j=2, i=4, A = {<1,2>,<2,0>, <3,2>}) c23: terminal configuration

+Naive Algorithm

l  Obvious disadvantages:
l  Too many senseless configurations

l  O(n2) runtime (if no readings are considered)

l  Advantage:
l  Simple to implement

+Oracle

l  Which transition to chose in which state?

l  Every configuration is transformed to a feature vector:
l  The history of previous transitions can be used

l  Word information and context information is available

l  External resources can be used

+Feature Models: : 0John1saw2Mary3.4

l  Sample configuration:

l  (j=2, i=3, A = {<1,2>,<2,0>})

l  Feature templates:
l  Word form of token x: wf(x)
l  Pos tag of token x: pos(x)
l  Distance between tokens x and y: dist(x,y)
l  Is token x the root node?: isRoot(x)

l  Features:
l  wf(2)=saw, wf(3)=Mary, pos(2)=VBD, pos(3)=NNP, dist(2,3)=1,

isRoot(2)=true, wf(1)=John, pos(1)=NNP

l  Transition: make j the part of i

l  For some learning approaches very complex feature
engineering is required

+Supervised Machine Learning

l  Compute all feature vectors for all annotated sentences
from training corpus

l  Print all feature vectors into a file in the format required by
the machine learning method of your choice:

l  wfi=Mary posi=NNP wfj=saw posj=VBD link2
l  wfi=Mary posi=NNP wfj=John posj=NNP shift

l  Or
l  1:1 2:1 3:1 4:1 0
l  1:1 2:1 5:1 6:1 1
l  Define alphabet:

l  (1 - wfi=Mary; 2 - posi=NNP; 3 - wfj=saw; 4 - posj=VBD; 5
- wfj=John; 6 - posj=NNP); (0 - link2, 1 - shift)

l  Or Weka ARFF (Weka is a Machine Learning tool box)

+Classification

l  Instance: wfi=Mary posi=NNP wfj=saw posj=VBD ?

l  Classes: c1 – link(i,j), c2 – link(j,i),c3 – shift etc.

l  Classification:
l  sum(c1)=d1+w1,c1+w2,c1+w3,c1wn,c1

l  sum(c2)=d2+w1,c2+w2,c2+wn,c2
l  sum(c3)=d3+w1,c3+w2,c3+wn,c3

l  Highest sum(cj):
l  max = max{sum(c1),sum(c2),sum(c3)}

l  Probability of cj:
l  p(cj)=exp(sum(cj)-max)

l  Normalisation:
l  p(cj)=

+Classification

l  sum(c1)=1.323, sum(c2)=-0.119, sum(c3)=-1.204

l  The maximum is obviously max=sum(c1)=1.323

l  p(c1)=exp(sum(c1)-max)=exp(0)=1

l  p(c2)=exp(sum(c2)-max)=exp(-1.442)=0.236

l  p(c3)=exp(sum(c3)-max)=exp(-2.527)=0.08

l  The sum of all sum(cj) is 1.316. Thus the normalised probability
distribution is:

l  p(c1)= =0.76

l  p(c2)= =0.18

l  p(c3)= =0.06

1
1.316

0.236
1.316

0.08
1.316

+Summary

l  Dependency Grammar and Parsing

l  Graph-based parsing

l  Transition-based approach

l  Learning and Classification

