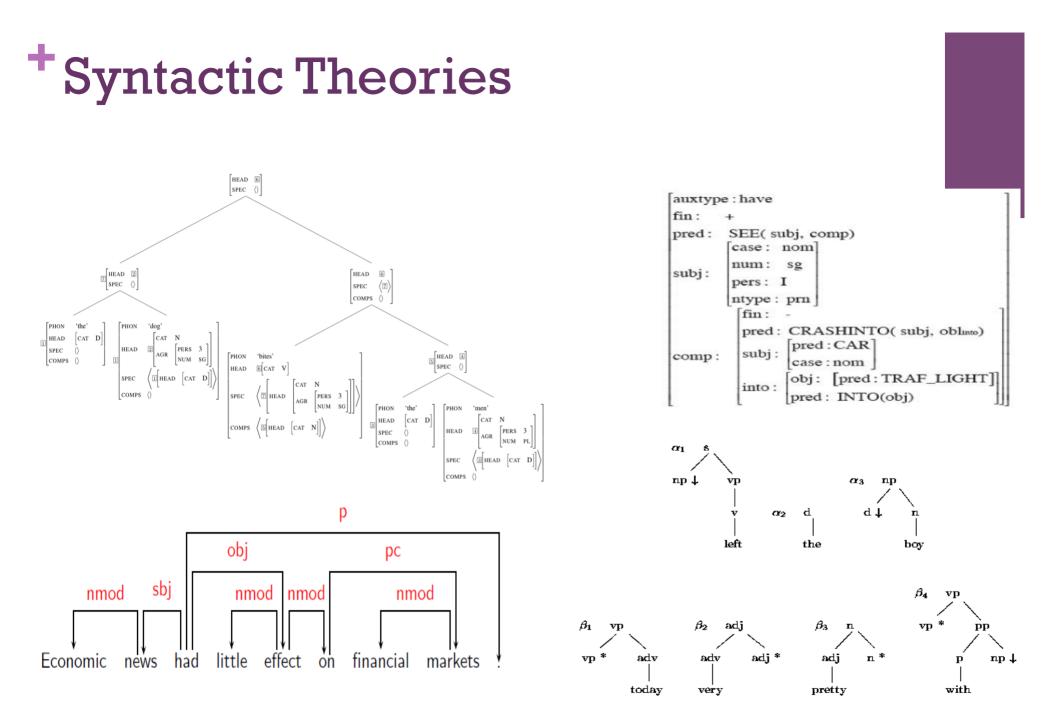
Dependency Parsing

Language Technology 1 WS WS 2015

Günter Neumann

- Dependency Grammar vs Dependency Parsing
- Transition-Based vs Graph-Based Dependency Parsing



Dependency Representation

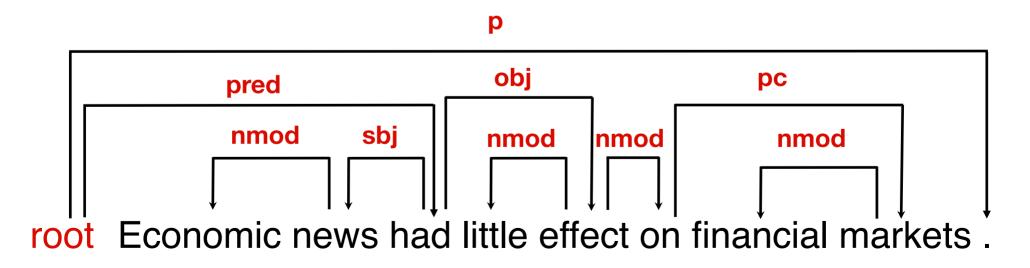
- The basic idea:
 - Syntactic structure consists of lexical items, linked by binary, asymmetric, directed, anti-reflexive, anti-transitive, labeled relations called dependencies.
- $A \rightarrow B; \langle B, A \rangle$

(A is head/parent/governor; B is dependent/child/ subordinate)

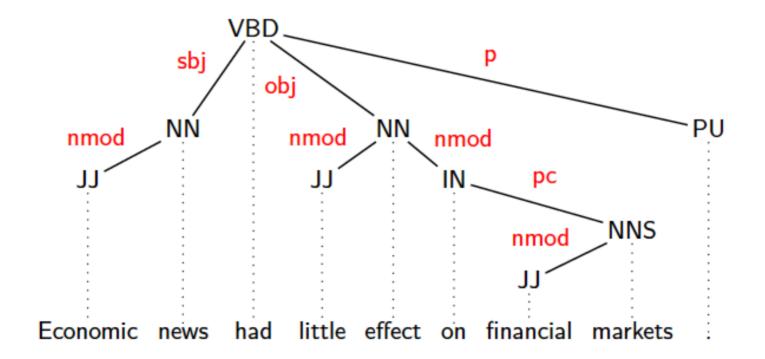
 Syntactic structures are usually trees, i.e. they have the following properties: connectedness, single-headiness, rooted, acyclicity, (projectivity)

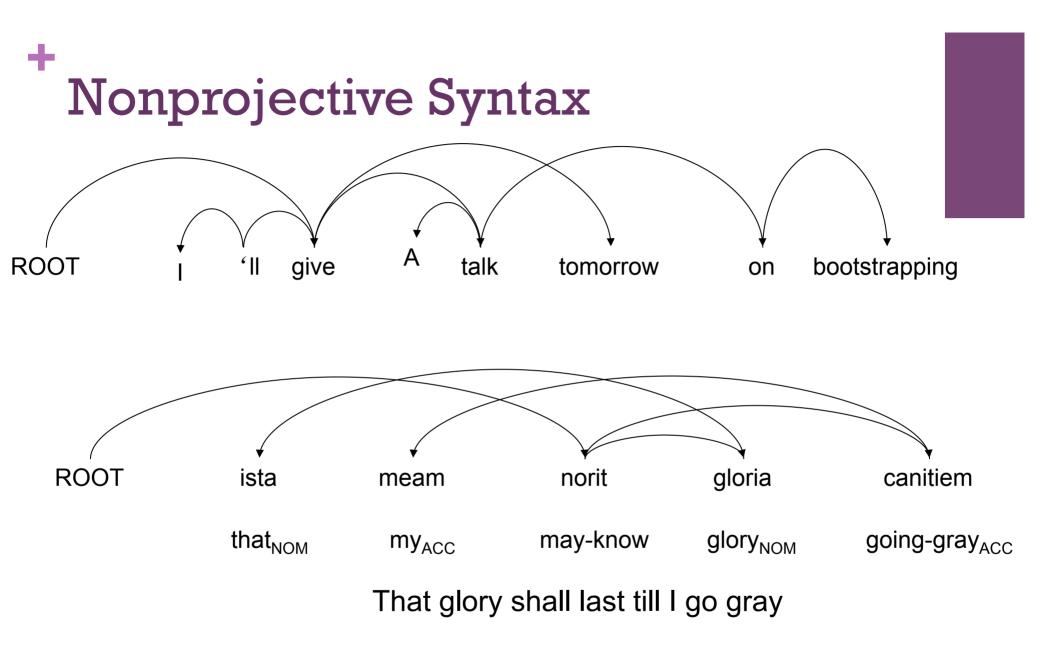
+ Connected, A-cyclic, Single-head

- A syntactic structure is complete (connected)
- A syntactic structure is hierarchical (acyclic)
- Each word has at most one head (single head)
- Adding a special root-node can enforce connectedness.



Example of a Projective Dependency Tree





Dependency Grammar

• History:

ancient Greek, Sanskrit, Latin, Arabic, medieval Europe, 1900s

- Problematic phenomena: coordination, no groupings, auxiliaries
- Variations:

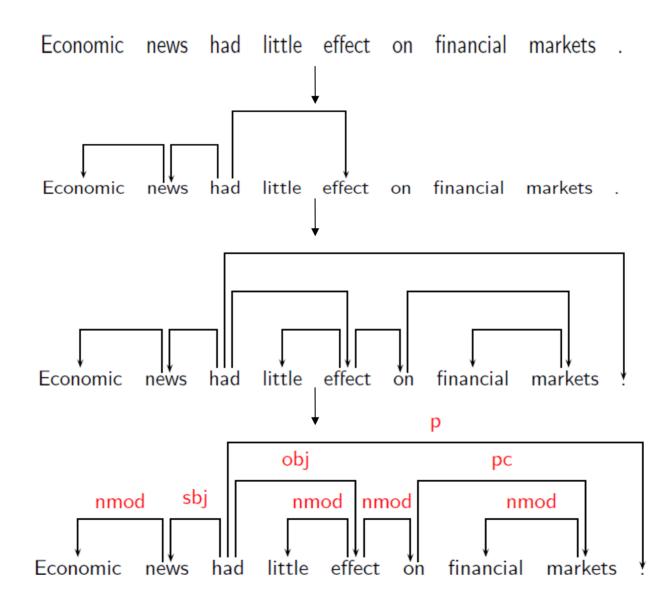
single vs. multiple layers (morphology, syntax), different tagsets and structures (Stanford vs. CoNLL)

Dependency Parsing

The problem

- Input: sentence x = w₀, w₁, ..., w_n with w₀ = root
- Output: dependency graph G = (V, A) for x whereby:
 - V = {0, 1, . . . , n} is the node set
 - A is the edge set, i.e., $(i, j, k) \in A$ represents a dependency from w_i to w_j with label $I_k \in L$

+Parsing



Dependency Parsing

- Easy to implement
 - No artificial (non-terminal) nodes
 - Linear complexity possible (deterministic parsing)
- Easy to evaluate
 - Attachment scores are very straightforward
- Very expressive
 - Suitable for free word order languages
- Useful representations
 - Very close to semantics, which is very often done next

*Applications

- Almost any language technology can profit from dependency parsing:
 - Machine Translation
 - Information Extraction
 - Textual Entailment
 - Question Answering
 - Summarisation
 - Text Generation

+ Grammar vs. Data-Driven

- Rule systems:
 - Lists of words for every category
 - Which categories occur with which categories
 - Valency
- Data-driven systems:
 - Use tree banks to learn how to link words
 - Dependency tree banks are available for many languages (CoNLL-X shared task)

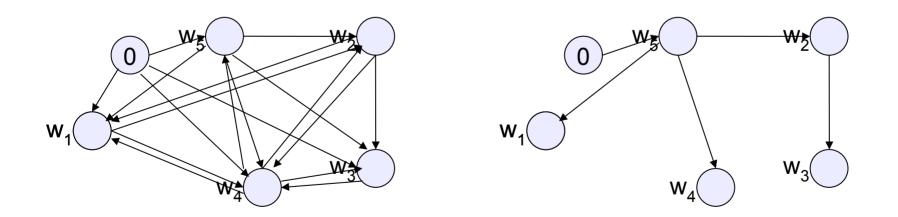
Transition-Based vs. Graph-Based

- Two predominant parser types
 - similar performance
 - completely different approaches
- Transition-based:
 - the result is constructed after a series of transitions (local decisions)
- Graph-based:
 - the result is constructed in few steps (global decisions)
 - Details from here:

http://www.ryanmcd.com/courses/esslli2007/esslli4.pdf

+ Graph-Based Parsing

- Given the input $I = w_1, w_2, \ldots, w_n$, where each word corresponds to a node v_1, v_2, \ldots, v_n , find a graph G = (V, A), such that G is a rooted tree and $A = \{<A_1, B_1>, <A_2, B_2>, \ldots, <A_n, B_n>\}$ corresponds to the correct dependency tree.
- Solution: Maximum Spanning Trees (MST) (the tree with the highest weight)

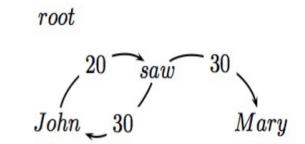


+ Chu-Liu-Edmonds

x =root John saw Mary

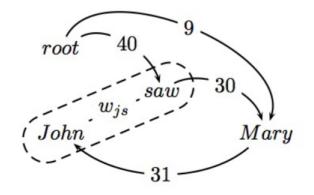


Find highest scoring incoming arc for each vertex



If this is a tree, then we have found MST!!

If not a tree, identify cycle and contract Recalculate arc weights into and out-of cycle



Taken from Introduction to Data-Driven Dependency Parsing (Ryan McDonald, Joakim Nivre)

Edmonds Algorithm

- For all nodes (modulo root node): Choose the best incoming edge
- Repeat (greedily) until the graph contains no a cycle
 - Consider each cycle as a virtual node. Compute modified edge weights for all edges which enter the cycle from outside
 - Idea: distribute (add) weights of edges of cycle to the incoming edges of the virtual node, e.g.,
 - w_n(root,saw) = w(root,saw) + w(saw,john)

-40 = 10 + 30

+ Graph-Based Parsing

- Advantages:
 - State-of-the art performance
 - Works well for long sentences/dependencies
- Disadvantages:
 - Not incremental
 - Computationally expensive (Chu-Liu-Edmonds need O(n*n) to find MST)

Transition-Based Parsing

- The parse of the sentence is a sequence of operations (transitions)
- The result is a complete set of dependency pairs, which satisfy tree constraints
- An oracle tells the parser what action should be taken in every step:
 - Training use training data for simulating a perfect oracle (you have the desired result given)
 - Application use classifiers for simulating an oracle (train models, that allow the oracle to choose correct actions)

Transition System

• Given the input $I = w_1, w_2, \dots, w_n$ perform $S = c_0, c_1, \dots, c_n$, such that

 $A = \{<\!A_1, B_1\!>, <\!A_2, B_2\!>, \dots, <\!A_n, B_n\!>\}$ corresponds to the correct dependency tree

- Configuration state of the parser
 - Define the set of possible transitions, e.g.: left_link(a, b)
 - Conditions (permissibility):
 - b should not have a parent; if <a, b> is added to A, A should not contain a cycle etc.
- Effects:
 - left_link(a, b) \rightarrow a becomes the parent of b
 - right_link(a, b) \rightarrow b becomes the parent of a
 - $shift(a, b) \rightarrow move on to next pair$
- Initial configuration / terminal configuration

Parsing Algorithms

• Naïve:

- For every word *j* in the sentence try to combine it with other words *i* in the sentence (i < j):
- Possible operations: make j the parent of i make i the parent of j do not combine and j+1, i = 0 do not combine and i+1 Initial state: Start with the first word Terminal state: j > sentence length
- Nivre (Arc-Eager, Arc-Standard)
- Covington's parsing strategy

+ Ex: ₀John₁saw₂Mary₃.₄

c₀: j =1; i = 0, A = {}: initial state

• $\mathbf{c}_0 \rightarrow \mathbf{c}_1$: do not combine; i+1	(j=1, i=1, A = {})	$\mathbf{c}_{12}^{} \rightarrow \mathbf{c}_{13}^{}$: make j the part of i	(j=2, i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $\mathbf{c}_1 \rightarrow \mathbf{c}_2$: do not combine; i+1	(j=1, i=2, A = {})	$c_{13} \rightarrow c_{14}$: do not combine; j+1	(j=3, i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $c_2 \rightarrow c_3$: make i the parent of j;	(j=1, i=2, A = {<1,2>})	$c_{14} \rightarrow c_{15}$: do not combine;i+1	(j=3, i=1, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $c_3 \rightarrow c_4$: do not combine; i+1	(j=1, i=3, A = {<1,2>})	$\mathbf{c}_{15} \rightarrow \mathbf{c}_{16}$: do not combine;i+1	(j=3, i=2, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $\mathbf{c}_4 \rightarrow \mathbf{c}_5$: do not combine; i+1	(j=1, i=4, A = {<1,2>})	$c_{16} \rightarrow c_{17}$: do not combine;i+1	(j=3, i=3, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $c_5 \rightarrow c_6$: do not combine; j+1	(j=2, i=0, A = {<1,2>})	$c_{17} \rightarrow c_{18}$: do not combine;i+1	(j=3, i=4, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $\mathbf{c}_6 \rightarrow \mathbf{c}_7$: make i the parent of j	(j=2, i=0, A = {<1,2>,<2,0>}) $c_{18} \rightarrow c_{19}$: do not combine; j+	·1 (j=4, i=0, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $\mathbf{c}_7 \rightarrow \mathbf{c}_8$: do not combine; i+1	(j=2, i=1, A = {<1,2>,<2,0>}) $\mathbf{c}_{19} \rightarrow \mathbf{c}_{20}$: do not combine;i+	-1 (j=4, i=1, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $c_8 \rightarrow c_9$: do not combine; i+1	(j=2, i=2, A = {<1,2>,<2,0>}) $\mathbf{c}_{20} \rightarrow \mathbf{c}_{21}$: do not combine;i+	-1 $(j=4, i=2, A = \{<1, 2>, <2, 0>, <3, 2>, <4, 2>\})$
• $\mathbf{c}_9 \rightarrow \mathbf{c}_{10}$: do not combine; i+1	(j=2, i=3, A = {<1,2>,<2,0>]) $c_{21} \rightarrow c_{22}$: do not combine; i-	+1 (j=4, i=3, A = {<1,2>,<2,0>, <3,2>,<4,2>})
• $\mathbf{c}_{10} \rightarrow \mathbf{c}_{11}$: make j the part of i	(j=2, i=3, A = {<1,2>,<2,0>	, <3,2>}) $c_{22} \rightarrow c_{23}$: do not combin	ne;i+1 (j=4, i=4, A = $\{<1,2>,<2,0>,<3,2>,<4,2>\}$)
• $\mathbf{c}_{11} \rightarrow \mathbf{c}_{12}$: do not combine; i+1	(j=2, i=4, A = {<1,2>,<2,0>, <3,2>}) $c_{23:}$ terminal configuration		

*Naive Algorithm

- Obvious disadvantages:
 - Too many senseless configurations
 - O(n²) runtime (if no readings are considered)

- Advantage:
 - Simple to implement

- Every configuration is transformed to a feature vector:
 - The history of previous transitions can be used
 - Word information and context information is available
 - External resources can be used

+ Feature Models: : ₀John₁saw₂Mary₃.₄

- Sample configuration:
 - (j=2, i=3, A = {<1,2>,<2,0>})
- Feature templates:
 - Word form of token x: wf(x)
 - Pos tag of token x: pos(x)
 - Distance between tokens x and y: dist(x,y)
 - Is token x the root node?: isRoot(x)
- Features:
 - wf(2)=saw, wf(3)=Mary, pos(2)=VBD, pos(3)=NNP, dist(2,3)=1, isRoot(2)=true, wf(1)=John, pos(1)=NNP
- Transition: *make j the part of i*
- For some learning approaches very complex feature engineering is required

Supervised Machine Learning

- Compute all feature vectors for all annotated sentences from training corpus
- Print all feature vectors into a file in the format required by the machine learning method of your choice:
 - wfi=Mary posi=NNP wfj=saw posj=VBD link2
 - wfi=Mary posi=NNP wfj=John posj=NNP shift
- Or
 - 1:1 2:1 3:1 4:1 0
 - 1:1 2:1 5:1 6:1 1
 - Define alphabet:
 - (1 wfi=Mary; 2 posi=NNP; 3 wfj=saw; 4 posj=VBD; 5 - wfj=John; 6 - posj=NNP); (0 - link2, 1 - shift)
- Or Weka ARFF (Weka is a Machine Learning tool box)

Classification

- Instance: wfi=Mary posi=NNP wfj=saw posj=VBD ?
- Classes: $c_1 link(i,j)$, $c_2 link(j,i)$, $c_3 shift etc.$
- Classification:
 - $sum(c_1)=d_1+w_{1,c1}+w_{2,c1}+w_{3,c1}w_{n,c1}$
 - $sum(c_2) = d_2 + w_{1,c2} + w_{2,c2} + w_{n,c2}$
 - $sum(c_3) = d_3 + w_{1,c3} + w_{2,c3} + w_{n,c3}$
- Highest sum(c_i):
 - max = max{sum(c_1),sum(c_2),sum(c_3)}
- Probability of c_i:
 - $p(c_j) = exp(sum(c_j)-max)$
- Normalisation:
 - $p(c_j) = \sum_{j=1}^{n}$

$$\frac{p(c_j)}{\sum \operatorname{sum} p(c_j)}$$

Classification

- $\operatorname{sum}(c_1) = 1.323$, $\operatorname{sum}(c_2) = -0.119$, $\operatorname{sum}(c_3) = -1.204$
- The maximum is obviously $max=sum(c_1)=1.323$
- $p(c_1) = exp(sum(c_1) max) = exp(0) = 1$
- $p(c_2) = exp(sum(c_2) max) = exp(-1.442) = 0.236$
- $p(c_3) = exp(sum(c_3) max) = exp(-2.527) = 0.08$
- The sum of all $sum(c_j)$ is 1.316. Thus the normalised probability distribution is:
- $p(c_1) = \frac{1}{1.316} = 0.76$
- $p(c_2) = \frac{0.236}{1.316} = 0.18$
- $p(c_3) = \frac{0.08}{1.316} = 0.06$

- Dependency Grammar and Parsing
- Graph-based parsing
- Transition-based approach
- Learning and Classification

