Assignment 2

Seminar on Statistical Language Modeling

Universitat des Saarlandes

Jon Dehdari
December 1, 2014

p(fun|language model) = 1

By now you should have downloaded and installed the KenLM! toolkit. Now let’s
build language model querying software!

You can work in groups of 2-3 people for this. There should be at least one
programmer in each group, and preferrably one non-programmer (to evenly dis-
tribute these folks).

The software will read one or more UTE-8 sentences, one per line, from stdin on
the Unix/Linux command-line, and outputs the log;o probabilities of each word
to stdout. The output should be just like the output of KenLM.? Your software
should allow for arbitrary length n-grams. The one required command-line argu-
ment of your program is the name of the ARPA file (see below for discussion of
this file format). Also allow common command-line args like --help, --version,
etc. Thus the command-line invocation should be:

./1lm-query lm.arpa < test.txt > test.probs 2> test.pp

If you're using a scripting language, then you can use filename suffixes like Im-query . py,
1m-query.pl, etc. Also if you're using a scripting language, include the appro-
priate information in the shebang. Use minimal dependencies, especially those
beyond what are found on a standard Debian/Ubuntu system.

The non-programmer(s) in your team can be experts in the ARPA format and
how backoff-weights are applied. These folks can also look into how KenLM han-
dles unigrams, unseen (OOV) words, and end-of-sentence markers, and follow
such practices.

Output total perplexity (both for unseen and for seen) to stderr .

Use Git for version control and collaboration. If you don’t know how to use
Git, well, now’s a good time :-) All members of your team (progs and non-progs)
should learn how to use the basics of Git. Here are some links to learn how to use
it:

e http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

IMain website: http://kheafield.com/code/kenlm ; Github: https://github.com/kpu/kenlm
; Git command: git clone https://github.com/kpu/kenlm.git. It depends on several Boost
headers and libraries.

2The word ID (first field after the equals sign) can be a dummy number. At the end of the output,
KenLM outputs the total perplexity to stdout, but you should follow better practice and output
perplexity to stderr.

http://languagemodel.org/classes/uds/lm
http://www.coli.uni-saarland.de
http://jon.dehdari.org
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_.28stderr.29
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://kheafield.com/code/kenlm
https://github.com/kpu/kenlm

http://git-scm.com/doc

https://en.wikipedia.org/wiki/Git_(software)

https://training.github.com/kit/downloads/github-git-cheat-sheet.
pdf

https://en.wikibooks.org/wiki/Git/Introduction

In your main project directory, have a bin/ directory (where all softare executa-
bles go) and an optional src/ directory if applicable (where non-executable source
code goes). If applicable have a Makefile in the main project directory. You project
should be hosted on Github, unless you have a good reason othewise. You should
have a readme .md in the main project directory describing the software name, how
to install/compile, command-line usage, copyright, etc. If you're not familiar with
Markdown, have the non-programmer(s) learn the format (see below). Have the
non-programmer(s) write documentation in the readme.md file. Here are some
links to learn the markdown format:

e https://en.wikipedia.org/wiki/Markdown
e http://daringfireball.net/projects/markdown/basics

e http://daringfireball.net/projects/markdown/syntax

Localusage:markdown readme.md > readme.html

Appendix: ARPA Format

ARPA doc: http://www.speech.sri.com/projects/srilm/manpages/ngram-format.
5.html

p(ws|wy, wy) = if trigram exists — p3(wy, wo, w3)
else if bigram wq, wy exists — boytr (w1, w2) x p(ws|wy)
else — p(ws|w2)

p(walwy) = if bigram exists — po(wy, wy)
else — boyti(wy) X p1(ws)

Everything before \data\ is ignored. Afterwards the counts of each n-gram
order are listed, such as: Markov order x + 1 = n-gram order n, for SRILM and
KenLM.

ngram 1=83321
ngram 2=734706
ngram 3=1510236
ngram 4=1844304

Then, the logjg probabilities and backoff weights of each n-gram order are
listed, as in:

http://git-scm.com/doc
https://en.wikipedia.org/wiki/Git_(software)
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://en.wikibooks.org/wiki/Git/Introduction
https://github.com
https://en.wikipedia.org/wiki/Markdown
http://daringfireball.net/projects/markdown/basics
http://daringfireball.net/projects/markdown/syntax
http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html
http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html

\1-grams:

-0.9775657 <unk> 0

-inf <s> -0.89692545

-2.2764258 </s> 0

-4.5305624 dave -0.13577949
-6.348688 aneckstein -0.107379325

\2-grams:

-2.6448765 research </s> 0
-1.9577274 company </s> 0
-4.10923 <s> dave -0.052287683
-4.464891 said dave -0.052287683

\4-grams:
-2.7922783 she said , </s>
-1.1493444 roberts said , </s>

\end\
Notice that there is no backoff weight for the highest n-gram order, since we’ll
never use these.

See also:
http://kheafield.com/professional/avenue/kenlm_talk.pdf slide 10 “Exam-

ple Queries” especially
http://wuwl.icsi.berkeley.edu/Speech/faq/grammarfmts.html

http://kheafield.com/professional/avenue/kenlm_talk.pdf
http://www1.icsi.berkeley.edu/Speech/faq/grammarfmts.html

	References

