
Assignment 2

Seminar on Statistical Language Modeling
Universität des Saarlandes

Jon Dehdari

December 1, 2014

p(fun|language model) = 1

By now you should have downloaded and installed the KenLM1 toolkit. Now let’s
build language model querying software!

You can work in groups of 2–3 people for this. There should be at least one
programmer in each group, and preferrably one non-programmer (to evenly dis-
tribute these folks).

The software will read one or more UTF-8 sentences, one per line, from stdin on
the Unix/Linux command-line, and outputs the log10 probabilities of each word
to stdout. The output should be just like the output of KenLM.2 Your software
should allow for arbitrary length n-grams. The one required command-line argu-
ment of your program is the name of the ARPA file (see below for discussion of
this file format). Also allow common command-line args like --help, --version,
etc. Thus the command-line invocation should be:
./lm-query lm.arpa < test.txt > test.probs 2> test.pp

If you’re using a scripting language, then you can use filename suffixes like lm-query.py,
lm-query.pl, etc. Also if you’re using a scripting language, include the appro-
priate information in the shebang. Use minimal dependencies, especially those
beyond what are found on a standard Debian/Ubuntu system.

The non-programmer(s) in your team can be experts in the ARPA format and
how backoff-weights are applied. These folks can also look into how KenLM han-
dles unigrams, unseen (OOV) words, and end-of-sentence markers, and follow
such practices.

Output total perplexity (both for unseen and for seen) to stderr .
Use Git for version control and collaboration. If you don’t know how to use

Git, well, now’s a good time :-) All members of your team (progs and non-progs)
should learn how to use the basics of Git. Here are some links to learn how to use
it:

• http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

1Main website: http://kheafield.com/code/kenlm ; Github: https://github.com/kpu/kenlm
; Git command: git clone https://github.com/kpu/kenlm.git . It depends on several Boost
headers and libraries.

2The word ID (first field after the equals sign) can be a dummy number. At the end of the output,
KenLM outputs the total perplexity to stdout, but you should follow better practice and output
perplexity to stderr.

1

http://languagemodel.org/classes/uds/lm
http://www.coli.uni-saarland.de
http://jon.dehdari.org
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_.28stderr.29
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://kheafield.com/code/kenlm
https://github.com/kpu/kenlm


• http://git-scm.com/doc

• https://en.wikipedia.org/wiki/Git_(software)

• https://training.github.com/kit/downloads/github-git-cheat-sheet.
pdf

• https://en.wikibooks.org/wiki/Git/Introduction

In your main project directory, have a bin/ directory (where all softare executa-
bles go) and an optional src/ directory if applicable (where non-executable source
code goes). If applicable have a Makefile in the main project directory. You project
should be hosted on Github, unless you have a good reason othewise. You should
have a readme.md in the main project directory describing the software name, how
to install/compile, command-line usage, copyright, etc. If you’re not familiar with
Markdown, have the non-programmer(s) learn the format (see below). Have the
non-programmer(s) write documentation in the readme.md file. Here are some
links to learn the markdown format:

• https://en.wikipedia.org/wiki/Markdown

• http://daringfireball.net/projects/markdown/basics

• http://daringfireball.net/projects/markdown/syntax

Local usage: markdown readme.md > readme.html

Appendix: ARPA Format

ARPA doc: http://www.speech.sri.com/projects/srilm/manpages/ngram-format.
5.html

p(w3|w1, w2) = if trigram exists → p3(w1, w2, w3)

else if bigram w1, w2 exists → bowt2(w1, w2)× p(w3|w2)

else → p(w3|w2)

p(w2|w1) = if bigram exists → p2(w1, w2)

else → bowt1(w1)× p1(w2)

Everything before \data\ is ignored. Afterwards the counts of each n-gram
order are listed, such as: Markov order x + 1 = n-gram order n , for SRILM and
KenLM.

ngram 1=83321

ngram 2=734706

ngram 3=1510236

ngram 4=1844304

Then, the log10 probabilities and backoff weights of each n-gram order are
listed, as in:

2

http://git-scm.com/doc
https://en.wikipedia.org/wiki/Git_(software)
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://en.wikibooks.org/wiki/Git/Introduction
https://github.com
https://en.wikipedia.org/wiki/Markdown
http://daringfireball.net/projects/markdown/basics
http://daringfireball.net/projects/markdown/syntax
http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html
http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html


\1-grams:

-0.9775657 <unk> 0

-inf <s> -0.89692545

-2.2764258 </s> 0

-4.5305624 dave -0.13577949

-6.348688 aneckstein -0.107379325

...

\2-grams:

-2.6448765 research </s> 0

-1.9577274 company </s> 0

-4.10923 <s> dave -0.052287683

-4.464891 said dave -0.052287683

...

...

\4-grams:

-2.7922783 she said , </s>

-1.1493444 roberts said , </s>

...

\end\

Notice that there is no backoff weight for the highest n-gram order, since we’ll
never use these.

See also:
http://kheafield.com/professional/avenue/kenlm_talk.pdf slide 10 “Exam-
ple Queries” especially
http://www1.icsi.berkeley.edu/Speech/faq/grammarfmts.html

3

http://kheafield.com/professional/avenue/kenlm_talk.pdf
http://www1.icsi.berkeley.edu/Speech/faq/grammarfmts.html

	References

